Deductive Proofs of Almost Sure Persistence and Recurrence Properties
نویسندگان
چکیده
Martingale theory yields a powerful set of tools that have recently been used to prove quantitative properties of stochastic systems such as stochastic safety and qualitative properties such as almost sure termination. In this paper, we examine proof techniques for establishing almost sure persistence and recurrence properties of infinite-state discrete time stochastic systems. A persistence property ♦ (P ) specifies that almost all executions of the stochastic system eventually reach P and stay there forever. Likewise, a recurrence property ♦(Q) specifies that a target set Q is visited infinitely often by almost all executions of the stochastic system. Our approach extends classic ideas on the use of Lyapunov-like functions to establish qualitative persistence and recurrence properties. Next, we extend known constraint-based invariant synthesis techniques to deduce the necessary supermartingale expressions to partly mechanize such proofs. We illustrate our techniques on a set of interesting examples.
منابع مشابه
Almost Sure Convergence of Kernel Bivariate Distribution Function Estimator under Negative Association
Let {Xn ,n=>1} be a strictly stationary sequence of negatively associated random variables, with common distribution function F. In this paper, we consider the estimation of the two-dimensional distribution function of (X1, Xk+1) for fixed $K /in N$ based on kernel type estimators. We introduce asymptotic normality and properties and moments. From these we derive the optimal bandwidth...
متن کاملStep: Deductive-algorithmic Veriication of Reactive and Real-time Systems ?
The Stanford Temporal Prover, STeP, combines deductive methods with algorithmic techniques to verify linear-time temporal logic speciications of reactive and real-time systems. STeP uses veriication rules, veriication diagrams, automatically generated invariants, model checking, and a collection of decision procedures to verify nite-and innnite-state systems. computer-aided formal veriication o...
متن کاملThe Almost Sure Convergence for Weighted Sums of Linear Negatively Dependent Random Variables
In this paper, we generalize a theorem of Shao [12] by assuming that is a sequence of linear negatively dependent random variables. Also, we extend some theorems of Chao [6] and Thrum [14]. It is shown by an elementary method that for linear negatively dependent identically random variables with finite -th absolute moment the weighted sums converge to zero as where and is an array of...
متن کاملTHE ALMOST SURE CONVERGENCE OF WEIGHTED SUMS OF NEGATIVELY DEPENDENT RANDOM VARIABLES
In this paper we study the almost universal convergence of weighted sums for sequence {x ,n } of negatively dependent (ND) uniformly bounded random variables, where a, k21 is an may of nonnegative real numbers such that 0(k ) for every ?> 0 and E|x | F | =0 , F = ?(X ,…, X ) for every n>l.
متن کاملON THE ALMOSTLY SURE CONVERGENCE OF THE SEQUENCE D_P,Q
In this paper, we will discuss the concept of almost sure convergence for specic groups of fuzzyrandom variables. For this purpose, we use the type of generalized Chebyshev inequalities.Moreover, we show the concept of almost sure convergence of weighted average pairwise NQDof fuzzy random variables.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016